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Asset Price and Wealth Dynamics in Discrete Time:

Let              denote the price of asset i at time k.  )(kSi

ni ...1)())(1()1( kSkwkS iiii  

Where i -- Expected Return

iw -- iid Noise Term

0][ iwE

][ TwwE

















nw

w

w 
1



Primbs 4

ni ...1)())(1()1( kSkwkS iiii  

  )()()()()1()1(
1

kukwrkWrkW i

l

i

ifif 


 

Let ui(k) denote the dollar amount invested in Si(k)

Assume that we can invest in         of the Si(k).nl 

Let rf be a risk free rate of interest.

Let W(k) denote your wealth at time k.

Asset Price and Wealth Dynamics in Discrete Time:
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Asset Price and Wealth Dynamics in Discrete Time:
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)()( An index is a weighted average of n stocks: 

The index tracking problem is to trade l<n of the stocks and a 

risk free bond in order to track the index as “closely as possible”.












0

22 ))()((min
k

k

u
kIkWE 

One possible measure of how closely we track the index 

is given by an infinite horizon discounted quadratic cost:

Finance Problem #1: Index Tracking
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Limits on short selling: 0)( kui

Limits on wealth invested: )()( kWku ii 

Value-at-Risk:   1))()(Pr( kIkW

Finance Problem #1: Index Tracking

etc…
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Finance Problem #2: Dynamic Hedging of Options

x

xStock

time 0 time NStrike K
Strike K S(N)

Option
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Finance Problem #2: Dynamic Hedging of Options

time 0 time TStrike K

x

Stock

Strike K S(N)
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Finance Problem #2: Dynamic Hedging of Options
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It could also be subject to short selling constraints, 

transaction costs, etc.

for a well chosen γ !



Linear Systems with Multiplicative Noise
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Ideally, I would also consider chance constraints

but these are too difficult computationally…
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In this talk, I will present:

Newly developed SDP based stochastic receding horizon 

control methods for constrained linear systems with 

multiplicative noise.

Theoretical and practical challenges in stochastic 

formulations of constrained RHC.

Numerical results for financial engineering problems.    
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Willems and Willems, ‟76, El Ghaoui, ‟95, Ait Rami and Zhou, ‟00, Yao et. 

al., ‟01, Kleinman, ‟69, Wonham, ‟67, ‟68, McLane, ‟71 

Unconstrained SLQ Problem

References:
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Ideally, one would solve the optimal infinite horizon problem...

solve...

resolve... Horizon N

Horizon N

solve...

resolve... Horizon N

implement 

initial control 

action

implement 

initial control 

action

Instead, receding horizon control repeatedly solves finite 

horizon problems...
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resolve... Horizon N
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initial control 
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implement 

initial control 

action

Instead, receding horizon control repeatedly solves finite 

horizon problems...

So, RHC involves 2 steps:

1) Solve finite horizon optimizations on-line

2) Implement the initial control action 
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In receding horizon control, we consider a finite horizon optimal 

control problem.  

We will impose an open loop plus linear feedback structure:

),|0()|0( kuku NN 
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N kiu )|(where and

N denote the horizon length

Horizon N

solve...

10),|(  NikiuN  denote the predicted control

10),|(  NikiuN 

NikixN 0),|(  denote the predicted state

Note that: )()|0( kxkxN 

NikixN 0),|( 

From the current state x(k), let: 
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Constraints will be in the form of quadratic expectation constraints
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Note that state-only constraints are not imposed at time i=0.

C(x(k),N)

We will use quadratic expectation constraints (instead of 

probabilistic constraints) in the on-line optimizations. 
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Receding Horizon On-Line Optimization:
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This problem has a linear-quadratic structure to it. 

Hence, it essentially depends on the mean and variance 

of the controlled dynamics.
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Receding Horizon On-Line Optimization as an SDP (for q=1):
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By imposing structure in the on-line optimizations we are 

able to:

Formulate them as semi-definite programs.

Use closed loop feedback over the prediction 

horizon.

Incorporate constraints in an expectation form.
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resolve... Horizon N

Horizon N

solve...

resolve... Horizon N

implement 

initial control 

action

implement 

initial control 

action

Instead, receding horizon control repeatedly solved finite 

horizon problems...

So, RHC involves 2 steps:

1) Solve finite horizon optimizations on-line

2) Implement the initial control action 
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Three important questions:

What can be said about the performance of the receding horizon 

strategy versus the optimal infinite horizon strategy?

Performance:

What can be said about the satisfaction of constraints over the 

infinite horizon under the receding horizon strategy?

Constraint Satisfaction:

Stability: 
Does the receding horizon approach guarantee asymptotic 

stability? 
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To characterize stability properties for hard constraints, we

3) Address feasibility issues…

1) Impose a terminal cost at the end of the finite horizon.














































 






1

0

)(
)|(

)|()|(
)|(

)|(

)|(

)|(
min))((

N

i

N

T

N

N

N

T

N

N

kx
ku

N kNxkNx
kiu

kix
M

kiu

kix
EkxV

N

xTΦx is a Stochastic Lyapunov Function

2) Impose a terminal constraint at the end of the horizon.

   )|()|()( kNxkNxE N

T

Nkx
Terminal Constraint: 
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A feasibility issue.

Since we have stochastic dynamics, there is some 

probability that we may encounter infeasible states for the 

on-line optimization problems. 

Two ways to deal with this infeasibility: 

We take the second route...

Stop the system when/if it goes infeasible.

Define a control policy when infeasible state are encountered.
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Consider the following policy: 
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RHC policy is used
Switch to optimal 

unconstrained
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resolve... Horizon N

Horizon N

solve...

implement 

initial control 

action
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Fx is the describes the set of states where the solution at x will be feasible at the 

next time step.  The probability of this set will play a role in our stability 

results!
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Theorems:

Assume that for all  

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For all  

Nx 

Performance:

Theorems:
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Note that when feasibility is not an issue (i.e. Px(Fx)=1), then the 

finite horizon cost is a bound on the infinite horizon performance.  

This result follows from the stability result.
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Theorems:
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A similar result can be stated for the state-only constraints, but with respect 

to modified feasibility sets that impose state-only constraints at i=0.     
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To circumvent these feasibility issues, one may use a 

soft constraint approach. 
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This can be solved as an SDP, and an always feasible terminal 

constraint can be used to guarantee stability with probability 1.

(See Primbs „07 CDC submission)
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Example Problem:

  )()()()()()1( kwkDukCxkBukAxkx 
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
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Example Problem:

State Constraint

3.2)]()(2[ 21  kxkxE

Optimal Unconstrained Cost to go:

)()())(( kxkxkxV T 















3889.547929.5

7929.50331.41

Terminal Constraint

45)]|()|([)(  kNxkNxE T

kx

Horizon

10N
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Level Sets of the State and Terminal Constraints.
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75 Random Simulations from Initial Condition [-0.3,1.2].

Uncontrolled Dynamics
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75 Random Simulations from Initial Condition [-0.3,1.2].

Optimal Unconstrained Dynamics
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75 Random Simulations from Initial Condition [-0.3,1.2].

RHC Dynamics (Hard Constraint)
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RHC Dynamics (Soft Constraint)

75 Random Simulations from Initial Condition [-0.3,1.2].
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Ex #1: Index Tracking Example:

Five Stocks: IBM, 3M, Altria, Boeing, AIG

Means, variances and covariances estimated from 15 years of 

weekly data beginning in 1990 from Yahoo! finance.  

Initial prices and wealth assumed to be $100.

Risk free rate of 5%

Horizon of N = 5 with time step equal to 1 month.
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The index is an equally weighted average of the 5 stocks.

Initial value of the index is assumed to be $100.

The index will be tracked with a portfolio of the first 3 

stocks: IBM, 3M, and Altria.

Ex #1: Index Tracking Example:

We place a constraint that the fraction invested in 3M 

cannot exceed 10%.

Five Stocks: IBM, 3M, Altria, Boeing, AIG
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Index – Green, Optimal Unconstrained - Cyan, RHC - Red

Index
RHC

Optimal
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Optimal Unconstrained Allocations

Blue – IBM, Red – 3M, Green - Altria 

RHC Allocations
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Index – Green, Optimal Unconstrained - Cyan, RHC - Red

Index

RHC
Optimal
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Optimal Unconstrained Allocations

Blue – IBM, Red – 3M, Green - Altria 

RHC Allocations
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Ex #2: Dynamic Hedging

Dynamic Hedging of a European Call Option under Trans. Costs

Initial price of stock is $10. Strike price of $10.

Risk free rate of 5%. Expiration in 2 weeks.

RHC horizon of N = 5 with time step equal to 1 day.

Initial wealth equal to Black-Scholes price.

Underlying asset follows geometric Brownian motion

SdzSdtdS  

μ=9.16% and σ=30.66% (estimated from IBM)

Different levels of proportional transaction costs.



resolve... Horizon N

Horizon N

solve...

resolve... Horizon N

implement 

initial control 

action

implement 

initial control 

action

Expiration 
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  )()()()()()1()1(
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






 

To implement transaction costs, adjust wealth dynamics:

Transaction costs

)1()1()()(  kukuk iiii where

is an approximation of the expected transaction cost. 
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time 0 time NStrike K

xStock

Strike K S(N)

Option

x

Recall Dynamic Hedging Picture
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S(N)

W(N)

Black-Scholes vs. RHC   

0% Transaction Cost
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S(N)

W(N)

Black-Scholes vs. RHC   

1% Transaction Cost
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S(N)

W(N)

Black-Scholes vs. RHC   

2% Transaction Cost
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S(N)

W(N)

Black-Scholes vs. RHC   

3% Transaction Cost
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S(N)

W(N)

Black-Scholes vs. RHC   

4% Transaction Cost
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S(N)

W(N)

Black-Scholes vs. RHC   

5% Transaction Cost



Primbs 62

S(N)

W(N)

Leland     vs. RHC   

0% Transaction Cost
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S(N)

W(N)

1% Transaction Cost

Leland     vs. RHC   
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S(N)

W(N)

2% Transaction Cost

Leland     vs. RHC   
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S(N)

W(N)

3% Transaction Cost

Leland     vs. RHC   
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S(N)

W(N)

4% Transaction Cost

Leland     vs. RHC   
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S(N)

W(N)

5% Transaction Cost

Leland     vs. RHC   
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This can easily be applied to…

a 5 dimensional basket option with

transaction costs, 

short selling constraints, 

restrictions on which assets can be traded,

etc.
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The basket is an equally weighted average of the 5 stocks.

Initial value of all stocks and strike is assumed to be $10.

Initial wealth of hedging portfolio is Method of Moments 

price (uses first two moments of basket in Black-Scholes

formula).  

Ex #2: Dynamic Hedging of a Basket Option:

Different levels of proportional transaction costs.

Five Stocks: IBM, 3M, Altria, Boeing, AIG
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Basket Value at N 

W(N)

Method of Moments     vs. RHC   

0% Transaction Cost

5 Dimensional Basket Option
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Basket Value at N 

W(N)

Method of Moments     vs. RHC   

1% Transaction Cost

5 Dimensional Basket Option
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Basket Value at N 

W(N)

Method of Moments     vs. RHC   

2% Transaction Cost

5 Dimensional Basket Option
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Conclusions

By exploiting and imposing problem structure, constrained stochastic 

receding horizon control can be implemented in a computationally 

tractable manner for a number of problems.    

Preliminary results suggest that stochastic receding horizon control 

can address a number of financial engineering problems with success.  

As future work, we are looking at formulations to address a wider 

class of dynamics, and still remain computationally tractable.  
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